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Abstract

DNA can be concatenated by hybridization of DNA fragments with protruding single-stranded termini. DNA cleavage
occurring at a nucleotide containing a DNA base analogue is a useful method to obtain DNA with designed protruding
termini. Here, we report a novel non-enzymatic DNA cleavage reaction for DNA concatenation. We found that DNA is
cleaved at a nucleotide containing 5-ethynyluracil in a methylamine aqueous solution to generate 59-phosphorylated DNA
fragment as a cleavage product. We demonstrated that the reaction can be applied to DNA concatenation of PCR-amplified
DNA fragments. This novel non-enzymatic DNA cleavage reaction is a simple practical approach for DNA concatenation.
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Introduction

Genetic recombination is ubiquitous research tool in the

biological sciences. Typically, restriction enzymes are used to cut

and paste DNA fragments for genetic recombination [1]. These

enzymes cleave double-stranded DNA to produce sticky ends,

enabling sequence-specific DNA ligation. The recognition se-

quences for restriction enzymes, however, impose severe sequence

restrictions on the design of recombinant DNA sequences.

Recently, various seamless DNA concatenation methods have

been reported, in which no specific sequence is required for DNA

joining [2–10].

Site-specific DNA cleavage using a DNA base analogue can

produce DNA with protruding termini which can be used for

seamless DNA concatenation [8–10]. Giese et al. achieved non-

enzymatic nucleotide-specific DNA cleavage by using 8-oxogua-

nine as a degradable DNA base to produce single-stranded

overhangs on PCR-amplified DNA [10]. Such non-enzymatic

DNA cleavage reactions have several advantages. 1) Reagents for

non-enzymatic reactions are generally less expensive than

enzymes. 2) Quality control of the reagents is easier than for

enzymes. 3) Non-enzymatic reactions are more often tolerent of

pH and ion concentrations than their enzymatic counterparts.

Their method does have two major limitations — the mutagenic-

ity of 8-oxoguanine and the requirement of O2 bubbling for the

degradation of DNA containing 8-oxoguanine.

Here, we report a novel DNA cleavage reaction induced by 5-

ethynyluracil. The reaction occurs in a methylamine aqueous

solution to cause DNA cleavage at a nucleotide containing 5-

ethynyluracil. One of the cleavage products is a 59-phosphorylated

DNA fragment which is favourable for enzymatic ligation. We

applied the reaction to the cleavage of PCR-amplified DNA

fragments and showed the resulting DNA fragments can be

concatenated. The DNA cleavage requires only the addition and

removal of methylamine enabling a simple procedure for DNA

concatenation. Sequencing results also indicate that the mutage-

nicity of 5-ethynyluracil might be low as would be expected given

its structural similarity to thymine (Figure 1).

Materials and Methods

General
DNA oligonucleotides were synthesized on an NTS H-6 DNA/

RNA synthesizer. Analysis and purification of DNA oligonucle-

otides by reversed-phase HPLC was carried out on a CHEMCO-

BOND 5-ODS-H column (10 mm6150 mm) with a Gilson

Chromatograph, Model 305. Flow rate of the solvent for HPLC

was 3.0 mLNmin21. Detection wavelength of the UV detector for
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HPLC analysis was 254 nm. MALDI TOF mass spectra were

measured with a Shimadzu AXIMA Assurance. DNA concentra-

tion was calculated from UV absorbance at 260 nm [11]. Molar

extinction coefficients of DNA oligonucleotides were calculated by

regarding 5-ethynyluracil as thymine.

Cleavage of DNA oligonucleotides
Synthesis of DNA oligonucleotides containing 5-ethynyluracil is

described in the Supporting Information (Method S1) [12,13].

The same volume of 28% NH3aq or 40% MeNH2aq was added to

the aqueous solution of DNA oligonucleotides (100 mM) in a

screw-cap tube for the DNA cleavage. After incubation at 70, 37,

or 25 uC, methylamine in the reaction solutions was removed by

speed-vac. The residue was directly analysed by reversed-phase

HPLC with a linear gradient over 20 minutes from 5 to 20%

CH3CN in 50 mM ammonium formate (AF). The cleavage

products were purified by reversed-phase HPLC, desalted and

identified by MALDI TOF mass spectrometry (Data S1).

DNA concatenation
PCR amplification of DNA fragments using primers containing

5-ethynyluracil is described in the Supporting Information

(Method S2) [12,13]. The PCR sample was transferred from the

PCR tube to a screw-cap tube. The same volume of 40%

MeNH2aq was added to the PCR sample to cleave DNA. The

solutions were incubated at 25uC for 48 hours, 37uC for 10 hours,

and 70uC for 0.5 hours, respectively. Methylamine in the sample

was removed by speed-vac. H2O was added to return the sample

to its post-PCR volume. The solutions of 1.5 and 2.2 kbp DNA

fragments were mixed in a 1:1 ratio and incubated at 40uC for 10

minutes for hybridization. The mixed solution was diluted 206
with H2O for the transformation of competent cells (TOYOBO,

Competent high DH5a). 1 mL of the diluted solution and 10 mL of

thawed competent cells were added to an ice-cold tube and the

mixture was left on ice for 30 minutes. After heat-shock at 42uC
for 45 seconds, SOC medium (200 mL) was added to the mixture.

The mixture was incubated at 37uC for 30 minutes and 50 mL of

the mixture was plated on four LB agar plates containing

ampicillin (50 mgNmL21). After incubation at 37uC for 16 hours,

the numbers of the transformants on the plates were counted. The

transformants were picked up from the colonies and cultured in

3 mL LB medium containing ampicillin (50 mgNmL21) at 37uC for

16 hours. Plasmid was purified from the culture by using the

Wizard Plus minipreps DNA purification system (Promega).

Sequencing of the plasmids was carried out by using BigDye

Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) and

an ABI3130 or 3170 automated sequencer (Applied Biosystems).

Figure 1. Chemical structures of thymine (T) and 5-ethynylur-
acil (EU).
doi:10.1371/journal.pone.0092369.g001
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Results and Discussion

The base induced-cleavage reaction of DNA containing 5-

ethynyluracil has not previously been described in detail. Seela et

al reported that DNA oligonucleotides containing 5-ethynyluracil

are unstable at 55uC in aqueous ammonia, generating by-products

[12]. In order to investigate the degradation reaction, we prepared

DNA oligonucleotides containing 5-ethynyluracil (EU) according

to the literature [12,13]. As reported, a DNA oligonucleotide,

T6(EU)T6, generated the by-products under heating in aqueous

ammonia (Figure 2A). MALDI -TOF mass data indicate that the

main peak in Figure 2A corresponds to T6(EU)T6. The molecular

mass of the main by-product (MB), appearing just after the main

peak, is larger by 17 than that of T6(EU)T6.This indicates that MB

might be generated by addition of one molecule of ammonia to

T6(EU)T6.

To our surprise, we found that methylamine, which is a stronger

nucleophile than ammonia, caused nearly quantitative DNA

cleavage of T6(EU)T6 at the nucleotide containing 5-ethynyluracil.

Two products, P1(T6(EU)T6) and P2(T6(EU)T6), appeared as two

peaks on the reversed-phase HPLC chart after the reaction

(Figure 2B). The molecular masses of P1(T6(EU)T6) and

P2(T6(EU)T6) are indicated as 1843 and 1972 by MALDI TOF

mass spectrometry (Data S1). The results indicate that T6(EU)T6

was cleaved at the EU nucleotide. P1(T6(EU)T6) was expected to

be either pT6 or T6p because the molecular mass is identical to

those of pT6 and T6p. P2(T6(EU)T6) likely contains a residue

derived from the EU nucleotide because the molecular mass is

larger than those of pT6 and T6p. Most of the T6(EU)T6 was

cleaved after 30 minutes at 70uC, 10 hours at 37uC, and 48 hours

at 25uC in 20% MeNH2aq (Figure S1).

The cleavage reaction was examined in detail by using

(EU)T2AT2GT2 and T2AT2GT2(EU)T. Treatment of (EU)-

T2AT2GT2 with methylamine generated a single main product,

namely, P1((EU)T2AT2GT2) (Figure 2C). P1((EU)T2AT2GT2) was

identified as pT2AT2GT2 by MALDI TOF mass spectrometry

(Data S1) and coinjection with authentic pT2AT2GT2 [14] to

reversed-phase HPLC. The methylamine treatment with

T2AT2GT2(EU)T generated a single main product, namely,

P2(T2AT2GT2(EU)T) (Figure 2D). The molecular mass of

P2(T2AT2GT2(EU)T) was larger by 129 than that of T2AT2GT2p

(2486) (Data S1). Heating at 120uC in a buffer degraded

P2(T2AT2GT2(EU)T) to produce a major product, namely, P2’

(T2AT2GT2(EU)T) (Figure S2). The molecular mass of P2’

(T2AT2GT2(EU)T) was indicated as 2486 by MALDI TOF mass

spectrometry (Data S1). Dephosphorylation of P2’ (T2AT2G-

T2(EU)T) by alkaline phosphatase generated T2AT2GT2, which

was confirmed by MALDI TOF mass spectrometry (Data S1) and

coinjection to reversed-phase HPLC with the authentic

T2AT2GT2. The results strongly suggest that P2’ (T2AT2G-

T2(EU)T) is T2AT2GT2p. It has been reported that 3’-phosphor-

ylated DNA fragments can be generated by heat degradation of

DNA containing an abasic site [15], suggesting that the structure

of P2(T2AT2GT2(EU)T)) might be similar to a cleavage product

obtained by elimination of the DNA base [16]. We show the

chemical formula of the DNA cleavage reaction in Figure 3.

DNA oligonucleotides, T5X(EU)XT5 (X = A, C, and G) and

CGCA2T(EU)TA2CGC, were also cleaved to produce two

products corresponding to P1 and P2 (Figure S3). Here, we used

volatile methylamine to facilitate removal from the samples. Other

primary amines such as ethylenediamine and 2-aminoethanol can

be also used for the DNA cleavage reaction (data not shown). We

have named the DNA cleavage reaction QBIC (Quantitative Base-

Induced DNA Cleavage), as the reaction proceeded almost

quantitatively. We propose a cyclization-driven base elimination

induced by nucleophilic attack by methylamine as the mechanism

of the DNA cleavage reaction induced by 5-ethynyluracil (Method

S3). The DNA cleavage by other DNA base analogues is consistent

with the mechanism (Method S3, Figure S4) [17–26]. However,

the rate of the DNA cleavage induced by the DNA analogues was

slower than that using EU. Our preliminary results indicate that

the reaction might be applicable to the preparation of 59-

phosphorylated DNA oligonucleotides by using the DMTr-ON

method on a DNA synthesizer (Method S4, Figure S5) [17].

We applied the QBIC reaction to the concatenation of PCR-

amplified DNA fragments. PCR amplification of a DNA fragment

with primers containing 5-ethynyluracil generates DNA fragments

containing 5-ethynyluracil in the primer-derived regions. Cleavage

of the PCR-amplified DNA fragment would produce a gap. If the

terminal regions of the two DNA fragments are complementary to

each other, they should be able to hybridize by heating and

cooling. To verify this, a simple plasmid construction was carried

out (Figure 4A). Before PCR, a DNA oligonucleotide containing

A, C, G, T, and EU bases was confirmed to be stable under PCR

conditions (Figure S6).

Two pairs of primers shown in Figure 4B were used to amplify

1.5 and 2.2 kbp DNA fragments from linear lambda phage DNA

Figure 2. Degradation of DNA oligonucleotides containing 5-
ethynyluracil. (A), (B) HPLC charts of T6(EU)T6 before (gray) and after
(black) the reaction in 14% NH3aq (A) or 20% MeNH2aq (B) at 70uC for
2 hours. (C), (D) (EU)T2AT2GT2 (C) and T2AT2GT2(EU)T (D) before (gray)
and after (black) the reaction in 20% MeNH2aq at 70uC for 2 hours.
doi:10.1371/journal.pone.0092369.g002

Figure 3. Chemical formula of the DNA cleavage reaction. R is expected to be an abasic sugar derivative.
doi:10.1371/journal.pone.0092369.g003
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Figure 4. Construction of plasmid from two PCR-amplified DNA fragments. (A) Scheme of plasmid construction. (B) Primer sequences used
for PCR. The two sequences underlined in red and blue are complementary to each other. (C–G) Pictures of agarose gel electrophoresis. (C) PCR-
amplified DNA fragments 1.5 (lane 2) and 2.2 kbp (lane 3). (D) 1.5 and 2.2 kbp DNA fragments before (lane 2,3) and after DNA cleavage at 25uC for
48 h (lane 4,5), 37uC for 10 h (lane 6,7), and 70uC for 0.5 h (lane 8,9). MeNH2 was removed from the samples by speed-vac before electrophoresis. (E)
Hybridized 1.5 and 2.2 kbp DNA fragments derived from those without cleavage reaction (lane 2) and cleaved at 25uC for 48 h (lane 3), 37uC for 10 h
(lane 4), and 70uC for 0.5 h (lane 5). (F,G) Intact purified plasmids (F) and EcoRV-digested plasmids (G) derived from the DNA fragments cleaved at
25uC for 48 h (lane 2,3), 37uC for 10 h (lane 4–6), and 70uC for 0.5 h (lane 7–9). (H) Sequencing results of primer-derived regions of the plasmids.
Underlined letters correspond to EU in the primers.
doi:10.1371/journal.pone.0092369.g004
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and EcoRI-digested pBluescript-sk(–) [27], respectively. Successful

amplification of the fragments was indicated by agarose gel

electrophoresis (Figure 4C). The same volume of 40% methyl-

amine aqueous solution was added to the PCR samples and the

mixtures were incubated at 70uC for 30 minutes, 37uC for

10 hours, and 25uC for 48 hours, respectively. After the cleavage

reaction, methylamine in the samples was removed by speed-vac

and the sample was diluted with H2O to restore the volume it had

after PCR. The cleaved DNA fragments were analyzed by agarose

gel electrophoresis (Figure 4D). The bands corresponding to the1.5

and 2.2 kbp DNA fragments were slightly weaker after cleavage at

higher temperature possibly due to alkali denaturation.of the DNA

fragments. The same volume solutions of the cleaved DNA

fragments were mixed and the resultant solution was incubated at

40uC for 10 minutes and cooled to 25uC for hybridization. The

hybridized samples were analyzed by agarose gel electrophoresis

(Figure 4E). Weak bands with a size larger than those of the two

DNA fragments indicated that at least a part of them hybridized to

form longer DNA fragments, although it was not clear that all the

hybridized structures of the two DNA fragments were stable

throughout the agarose gel electrophoresis.

The hybridized samples were diluted 20 times with H2O.

Escherichia coli (DH5a) was transformed using 1 mL of the diluted

samples. The transformants were plated on LB plates containing

ampicillin. The numbers of the transformed DH5a colonies were

5968, 53617, and 1762 for samples with DNA cleavage

temperatures of 25uC, 37uC, and 70uC, respectively. Three

plasmids were purified from the transformants derived from each

DNA sample. The agarose gel electrophoresis of the intact

plasmids (Figure 4F) indicated that the size of one plasmid at lane

3 was larger than those of the other plasmids. Cleavage of the

plasmids by EcoRV, which would cut one site of the 1.5 kbp

fragment, produced 3.7 kbp fragments (Figure 4G) as expected.

Those results indicated that the larger plasmid was the dimer of

the 3.7 kbp DNA fragment. Sequencing of the primer-derived

region of the eight monomer plasmids made it clear that 5-

ethynyluracil was correctly replicated as T in the concatenated

DNA (Figure 4H). DNA concatenation experiments were carried

out for 14 other clones as well; mutations caused by 5-

ethynyluracilwere never observed (data not shown). One deletion

of the plasmid derived from the sample cleaved at 70uC was

presumably caused by insufficient deprotection of the DMTr

group during the automated DNA synthesis of the primer.

Conclusions

In this study, we report a novel DNA cleavage reaction

occurring at a nucleotide containing 5-ethynyluracil in a

methylamine aqueous solution. Although the reaction rate is

faster at elevated temperatures, the reaction proceeded even at

room temperature. One cleavage product is a 59-phosphorylated

DNA fragment, which is favourable for applications using

enzymatic DNA ligation. We applied the reaction to cleave

PCR-amplified DNA fragments, hybridized the DNA fragments,

and showed that concatenation of the DNA fragments can be

achieved in Escherichia coli. The sequencing data of the concate-

nated DNA indicats high fidelity of 5-ethynyluracil as a template

for DNA replication. Because DNA cleavage requires only

addition and removal of methylamine, this procedure for DNA

concatenation is quite simple.

Supporting Information

Figure S1 DNA cleavage of T6(EU)T6 at 25, 37, and 706C
in 20% MeNH2aq. (A–C), HPLC charts of T6(EU)T6 before

(gray) and after (black) the reaction in 20% MeNH2aq at 70uC for

0.5 hours (A), 37uC for 10 hours (B), and 25uC for 48 hours (C).

(TIF)

Figure S2 Heat degradation of PB’. HPLC charts of

P2(T2AT2GT2(EU)T) before (gray) and after (black) the reaction

in sodium phosphate buffer (100 mM, pH 7.0 at 25uC) at 120uC
for 2 hours.

(TIF)

Figure S3 Reactivity of EU in various sequences of DNA
oligonucleotides. HPLC charts of T5A(EU)AT5 (A),

T5C(EU)CT5 (B), T5G(EU)GT5 (C), and CGCA2T(EU)TA2CGC

(D) before (gray) and after (black) reaction in 20% MeNH2aq at

70uC for 2 hours.

(TIF)

Figure S4 Reactivity of DNA oligonucleotides containing
designed DNA base analogues. (A–F) HPLC charts of

T6(EU)T6 (A), T6(T1)T6 (B), T6(C1)T6 (C), T6(C2)T6 (D),

T6(A1)T6 (E), and T6(G1)T6 (F) before (gray) and after (black)

the reaction in 20% MeNH2aq at 70uC for 12 hours.

(TIF)

Figure S5 HPLC analysis of 59-phosphorylation of DNA
oligonucleotide. HPLC charts of crude DNA solution of

DMTr-(PU)T2AT2GT2 after NH3 treatment (gray) and crude

DNA solution of pT2AT2GT2 after ethylenediamine treatment

(black). PU depicts 5-phenylethynyluracil.

(TIF)

Figure S6 Stability of DNA oligonucleotide containing A,
T, G, C, and EU under PCR condition. HPLC chart of

CGCA2T(EU)TA2CGC in PCR buffer (61) after a temperature

program, 94uC, 2 min R [98uC, 30 sec R 60uC, 30 sec R 68uC,

90 sec] 630 R 4uC.

(TIF)

Data S1 MALDI TOF mass data of cleavage products.

(PDF)

Method S1 Preparation of DNA oligonucleotides con-
taining 5-ethynyluracil (EU).
(PDF)

Method S2 PCR amplification by using primers con-
taining 5-ethynyluracil (EU).

(PDF)

Method S3 Preparation and cleavage of DNA oligonu-
cleotides containing DNA base analogues.
(PDF)

Method S4 59-phosphorylation of the DNA oligonucleo-
tide using 5-phenylethynyluracil (PU).

(PDF)
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